
Lisa Lippincott

Meeting C++, November 2018

The Truth of a Procedure

Why don’t we routinely write down the reasoning
behind our programs in a formal way, and have
computers check it?

The mathematical tools we use for proofs present
a poor user interface for procedural programming.

Logic

Procedural Logic

A sentence is a statement about the world, which
may either be in agreement with the world (“true”)
or be in disagreement with the world (“false”).

A procedure is an embodied algorithm, conceived
as a scheme by which events may be arranged in
time, space, possibility and causality.

Procedures are sentences.

truetruefalse ortrue falseor andand())) ((Sentence

or

true false

or

and

true

and

truefalse

false

true

and and andand

or or oror

or

and

true

and

truefalse or

true false

🙂 makes a choice

😈 makes a choice

👿 loses the game

or

and

true

🙁 loses the gamefalse

or

and

trueor

true

🙂 makes a choice

😈 makes a choice

👿 loses the game

or

and

true

This sentence is true:
🙂 has a winning strategy.

or

and

true

and

truefalse or

true false

and

or

false

or

falsetrue and

false true

or

and

trueor

true

and

or

falseand

false

This sentence is true:
🙂 has a winning strategy.

This sentence is false:
😈 has a winning strategy.

The code here is written in a fantasy C++, with
extensions that make proofs fit into the code.

void foo()
implementation

{
…
…
bar();
…
…

}

void bar()
interface

{
…prologue
…
implementation;
…
…epilogue

}

void foo()
interface

{
…
…prologue
…
…
implementation;
…
…
…epilogue
…

}

🙂 😈👿

🙂😈 🙂

void foo()
implementation

{
…
…
bar();
…
…

}

void bar()
interface

{
…prologue
…
implementation;
…
…epilogue

}

void foo()
interface

{
…
…prologue
…
…
implementation;
…
…
…epilogue
…

}

🙂 😈👿

🙂😈 🙂

void foo()
implementation

{
…
…
bar();
…
…

}

void bar()
interface

{
…prologue
…
implementation;
…
…epilogue

}

void foo()
interface

{
…
…prologue
…
…
implementation;
…
…
…epilogue
…

}

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

claim statements are assertions
that must hold for local reasons.

Yellow claims for reasons in this function;
purple claims for reasons in other functions.

👿🙁 If a claim statement fails,
the current player loses.

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

An lvalue is usable if it may be
used in the usual manner for its
cv-qualified type.

Usable scalar lvalues
— have a stable value (if not volatile), and
— are modifiable (if not const).

Class types may have more complicated
rules for usability.

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

If an operation is used in the
procedure, its interface is part
of the game.

We’ll start the game with the interface of
operator>=(const int&, const int&).

const bool operator>=(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

claim usable(a);
claim usable(b);
claim usable(result);

}

😈
The value of a is six.
And the value of b is zero.

The current player
announces the value
of each usable lvalue.

const bool operator>=(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

claim usable(a);
claim usable(b);
claim usable(result);

} 😈

a is still six,
and b is still zero.
And the result is true.

If the object hasn’t been
changed, the player must
repeat the previous value.

😈
The value of a is six.
And the value of b is zero.

👿🙁 Unexpectedly changing
a value is penalized.

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

😈 The value of n is six.

The result is true; the claim succeeds!

Lvalues asserted usable directly
within the prologue provide the
direct input to the function.

The epilogue likewise describes
the direct output.

const int factorial(const int& n)
implementation

{
int r = 1;

for (int i = n; i != 0; --i)
if (can_multiply(r, i))

r *= i;
else

throw factorial_overflow();

return r;
}

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

return r;

throw factorial_overflow();

r *= i;

if (can_multiply(r, i))

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

int r = 1;☞

int::int(const int& a)
interface

{
claim usable(a);

implementation;

claim substitutable(a, *this);

claim usable(a);
claim usable(*this);

}

🙂The value of a is one.

😈
The value of a is one, and
*this is one. *this can be changed.

a and *this are both one.

When substitutable is claimed,
lvalues must have identical values.

return r;

throw factorial_overflow();

r *= i;

if (can_multiply(r, i))

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

int r = 1;

☞

return r;

throw factorial_overflow();

r *= i;

if (can_multiply(r, i))

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

int r = 1;

☞

inline
const bool operator!=(const int& a,

const int& b)
{
return !(a == b);

}

inline
const bool operator!(const bool& c)

{
return c ? false : true;

}

Inline functions without
declared interfaces are
played by the entering
player.

Sometimes showing what a function
does is simpler than describing it.
But this also makes the program brittle!

😈

The value of a is still six,
b is still zero,
and the result is false.

🙂
The value of a is six,
and b is zero.

The result is false; swerve right!

Branch directions are also part
of the direct input and output.

const bool operator==(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

if (result)
claim substitutable(a, b);

claim usable(a);
claim usable(b);
claim usable(result);

}

inline
const bool operator!=(const int& a,

const int& b)
{
return !(a == b);

}

inline
const bool operator!(const bool& c)

{
return c ? false : true;

}

Inline functions without
declared interfaces are
played by the entering
player.

Sometimes showing what a function
does is simpler than describing it.
But this also makes the program brittle!

return r;

throw factorial_overflow();

r *= i;

if (can_multiply(r, i))

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

int r = 1;

☞

😈

a is still one,
and b is still six.
And the result is true.

const bool can_multiply(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

claim usable(a);
claim usable(b);
claim usable(result);

}

🙂
The value of a is one, and
the value of b is six.

can_multiply has a basic
interface: usable input,
usable output.

return r;

throw factorial_overflow();

r *= i;

if (can_multiply(r, i))

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

int r = 1;

☞

int& int::operator*=(const int m)
interface

{
claim can_multiply(*this, m);

claim usable(m);
claim usable(*this);

implementation;

claim aliased(result, *this);

claim usable(m);
claim usable(*this);
claim usable(result);

}

😈

a is still one,
and b is still six.
Like last time, the result is true.

const bool can_multiply(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

claim usable(a);
claim usable(b);
claim usable(result);

}

🙂
As before, the value of a is one,
and the value of b is six.

If a function’s direct input is
repeated, its direct output
must also be repeated.

👿🙁 Announcing different
direct output is penalized.

😈

m is still six;
*this is now six and can change;
the result is six and can change.

int& int::operator*=(const int m)
interface

{
claim can_multiply(*this, m);

claim usable(m);
claim usable(*this);

implementation;

claim aliased(result, *this);

claim usable(m);
claim usable(*this);
claim usable(result);

}

🙂
The value of m is six, and while
*this is currently one, it can change.

result and *this are the same object.

The can_multiply claim succeeds!

Lvalues are aliased when they
refer to the same object.

👿🙁 There is a penalty for not mentioning observable aliasing.

return r;

throw factorial_overflow();

r *= i;

if (can_multiply(r, i))

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

int r = 1;

☞

😈
Six.
True.

🙂Six.

🙂Six; it changes.

Success!

Success!
Same object.

😈
Both are now five;
they can change.

const bool
can_decrement(const int& a)
interface

{
claim usable(a);
implementation;
claim usable(a);
claim usable(result);

}

int& int::operator--()
interface

{
claim can_decrement(*this);

claim usable(*this);
implementation;
claim can_increment(*this);
claim aliased(*this, result);
claim usable(*this);
claim usable(result);

}

return r;

throw factorial_overflow();

r *= i;

if (can_multiply(r, i))

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

for (int i = n; i != 0; --i)

int r = 1;

☞

const int factorial(const int& n)
implementation

{
int r = 1;

for (int i = n; i != 0; --i)
if (can_multiply(r, i))

r *= i;
else

throw factorial_overflow();

return r;
}

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

n is still six.
The result is seven hundred twenty. 🙂

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

n is still six.
The result is seven hundred twenty. 🙂

If this makes the game
endless, 👿 loses.

Finally, 😈 can have rematches:
if 😈 repeats the direct input,
🙂 must repeat the direct output.

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

In the game of truth, 😈 announces the input,
and 🙂 announces the output, broadly construed.

👿🙁 Stuck in a loop
👿🙁 Assertion failure
👿🙁 Unexpected value change
👿🙁 Inconsistent function results
👿🙁 Unmentioned aliasing

The game of truth has five penalty conditions:

🙂 wins this game of truth
if the first penalty goes to 👿.

😈 wins this game of truth
if the first penalty goes to 🙁.

🙂 wins this game of truth if
the first penalty goes to 👿.

😈 wins this game of truth if
the first penalty goes to 🙁.

🙂 has a winning strategy
if the first penalty goes to 👿
for all input values.

😈 has a winning strategy
if the first penalty goes to 🙁
for some input values.

🙂 wins this game of truth if
the first penalty goes to 👿.

😈 wins this game of truth if
the first penalty goes to 🙁.

🙂 has a winning strategy if
the first penalty goes to 👿
for all input values.

😈 has a winning strategy if
the first penalty goes to 🙁
for some input values.

The procedure is true if
🙂 has a winning strategy.

The procedure is false if
😈 has a winning strategy.

Q: Is there always a winning strategy for some player?
Or could a procedure be neither true nor false?

A: These games are topologically Borel. In a Borel
game, if one player does not have a winning
strategy, the other player does.  
 
(“Borel determinacy,” Donald A. Martin, 1975)

The true The false

✅ Euclidean geometry
✅ Algebraically closed fields (of any characteristic)
✅ Dense linear orderings (with or without endpoints)

The true

The true

The true

The true

The false

The false

The false

The false

The necessary The impossible The possible

The necessary The impossible The possible

Undecidable
“halting problem”
programs are here.

The necessary The impossible The possible

Good programs Bad programs More bad programs

Undecidable
“halting problem”
programs are here.

The necessary The impossible The possible

Good programs Bad programs More bad programs

😈🙂

Q: Is there some advantage we can give to 😈 so that
🙂 wins only if the procedure is necessarily true?

A: We can put 😈 in charge of the computer!  
That’s the principle behind the game of necessity.

const bool operator>=(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

claim usable(a);
claim usable(b);
claim usable(result);

}

Instead of choosing values,
😈 names the usable values.

😈
The value of a is Sue.
And the value of b is Zachary.

const bool operator>=(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

claim usable(a);
claim usable(b);
claim usable(result);

} 😈

a is still Sue,
and b is still Zachary.
And the result is Bob. Bob the boolean.

If the object hasn’t been
changed, 😈 must repeat
the previous name.

😈
The value of a is Sue.
And the value of b is Zachary.

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

😈 Bob is a left-turning boolean; the claim succeeds!

At branches and claims,
😈 tells us which way to go.

😈 must be consistent: once
a boolean turns one way, it
must always turn that way.

🙂
The value of a is Sam,
and the value of b is Fred.

Swerve left!

When claiming substitutability,
😈 explains that both names
refer to the same value.

const bool operator==(const int& a,
const int& b)

interface
{
claim usable(a);
claim usable(b);

implementation;

if (result)
claim substitutable(a, b);

claim usable(a);
claim usable(b);
claim usable(result);

}

Sammy-Freddy, his parents
used to call him.

Fred is Sam’s middle name.

😈 True story!

Instead of announcing values,
🙂 repeats names used by 😈.

If the value wasn’t named in
some previous claim, 🙁 loses.

claim usable(v); 🤔???

claim usable(f);

🙂That’s good old Charlie.

At branches and boolean
claims, 🙂 asks 😈 which
way to go.

🙂Which way does Betty turn?

😈 Betty turns left at branches.

if (can_multiply(r, i))

If 😈 hasn’t already chosen
a left turn, a boolean claim
may not go well for 🙁.

😟Which way does Eddie turn?

😈 Right! The claim fails!

claim decrementable(a);

When claiming substitutability,
🙂 reminds 😈 that both names
refer to the same value.

claim substitutable(x, y);
And here’s Forn, who
you say is called Orald
by the northern men. 🙄

If the names differ, and
😈 didn’t already claim
substitutability, 🙁 loses.

claim substitutable(p, q);

🤯Could Bacon be Shakespeare?

In the game of truth, 😈 announces the input,
and 🙂 announces the output, broadly construed.

In the game of necessity, 😈 tells a story, and 🙂
tells how the procedure executes within the story.

👿🙁 Stuck in a loop
👿🙁 Assertion failure
👿🙁 Unexpected name change
👿🙁 Inconsistent result names
👿🙁 Unmentioned aliasing

👿 Inconsistent branches
🙁 Novel atomic claim

The game of necessity has seven penalty conditions:

🙂 has a winning strategy
for this game of necessity
if the procedure is true for
all possible computers.

😈 has a winning strategy
for this game of necessity
if the procedure is false for
some possible computer.
(Forcing, Paul Cohen, 1963)

☹ 😈
Sue.
Eddie.

🙂Sue.

Which way?

const bool
can_decrement(const int& a)
interface

{
claim usable(a);
implementation;
claim usable(a);
claim usable(result);

}

😈
Right turn!
You lose.

int& int::operator--()
interface

{
claim can_decrement(*this);

claim usable(*this);
implementation;
claim can_increment(*this);
claim aliased(*this, result);
claim usable(*this);
claim usable(result);

}

Q: Is there some advantage we can give to 🙂 that’s
stronger than putting 😈 in charge of the computer?

A: We can team up with 🙂 to write the procedure!
That’s the principle behind the game of proof.

🙂
for (int i = n; i != 0; --i)

if (can_multiply(r, i))
r *= i;

else
throw factorial_overflow();

return r;
}

const int factorial(const int& n)
implementation

{
int r = 1;

claim countdown_theorem(n, 0);

In this game, 🙂 can insert
claim statements into the
function implementation as
the game is being played.

claimable
countdown_throrem(const int& high,

const int& low)
interface

{
claim high >= low;

claim implementation;

for (int c = high; c != low; --c)
{}

}

The new claims can include
calls to claimable functions
implemented elsewhere.

Such functions don’t affect
execution, but just explain
logical connections.

(Logicians call them “theorems.”)

claimable
countdown_throrem(const int& high,

const int& low)
interface

{
claim high >= low;

claim implementation;

for (int c = high; c != low; --c)
{}

}😈
Sue, Frank, Faye, Ted, Terry, Ollie,
and the loop ends with Zachary.

😈 As I said before, Bob turns left.
🙂

To sum up: Sue >= Zachary is Bob.
Which way does Bob turn?

How do you count down
from Sue to Zachary?

In the game of truth, 😈 announces the input,
and 🙂 announces the output, broadly construed.

In the game of necessity, 😈 tells a story, and 🙂
tells how the procedure executes within the story.

In the game of proof, 😈 tells a story while 🙂
asks questions, forcing 😈 to expand on the story.

😈 has a winning strategy for
this game of proof if the
procedure is false for some
possible computer that
obeys the claimable rules.
(Forcing, filtered colimits, finite injury)

🙂 has a winning strategy for
this game of proof if the
procedure can be made
necessary by adding claims
to the implementation.
(Compactness)

Cf. Completeness, Kurt Gödel, 1929

const int factorial(const int& n)
interface

{
claim n >= 0;

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

The trouble came from not saying
what we meant at this point.

const int factorial(const int& n)
interface

{
for (int i = n; i != 0; --i)

{}

claim usable(n);

implementation;

claim usable(n);
claim usable(result);

}

If the interface had expressed
the precondition the function
really used, there would have
been no need to call a theorem.

The trouble came from not saying
what we meant at this point.

🙂 😈👿

🙂😈 🙂

🤠🤠

🙂 🤠

🙂🙂

😎 🙂

😎

😎

In the big picture, there are no demons.

There are only other players, trying to win their own games.

Questions?

